Vishay BCcomponents # High Ohmic (up to 22 M Ω)/ High Voltage (up to 1.6 kV) Resistors ### **FEATURES** - Small size (0204) - · Lead (Pb)-free solder contacts - Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes - Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004) ### **APPLICATIONS** - Where high resistance, high stability and high reliability at high voltage are required - · High humidity environment - · White goods - Power supplies A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45". | TECHNICAL SPECIFICATIONS | | | | | |---|---|--|--|--| | DESCRIPTION | VALUE | | | | | Resistance Range (1) | 100 kΩ to 22 MΩ | | | | | Resistance Tolerance and Series: | | | | | | 100 k Ω to 15 M Ω | ± 1 %: E24/E96 series; ± 5 %: E24 series | | | | | 15 M Ω to 22 M Ω | ± 5 %: E24 series; ± 10 %: E12 series | | | | | Maximum Dissipation at T _{amb} = 70 °C | 0.25 W | | | | | Thermal Resistance, R _{th} | 140 K/W | | | | | Temperature Coefficient | $\leq \pm 200 \text{ x } 10^{-6} \text{/K}$ | | | | | Maximum Permissible Voltage: | | | | | | DC | 1600 V | | | | | RMS | 1150 V | | | | | Dielectric Withstanding Voltage of the Insulation for 1 Min | 700 V | | | | | Basic Specifications | IEC 60115-1B | | | | | Climatic Category (IEC 60068) | 55/155/56 | | | | | Stability After: | | | | | | Load (1000 h) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | | Accelerated Damp Heat Test (6 Days) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | | Long Term Damp Heat Test (56 Days) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | | Noise | max. 5 μV/V | | | | #### Note: ### **12NC INFORMATION** - The resistors have a 12-digit numeric code starting with 2322 241 - The subsequent: first digit for 1 % tolerance products (E24 and E96 series) or 2 digits for 5 % (E24 series) and 10 % (E12 series) indicate the resistor type and packing. - The remaining digits indicate the resistance value: - The first 3 digits for 1 % or 2 digits for 5 and 10 % tolerance products indicate the resistance value. - The last digit indicates the resistance decade. ### **Last Digit of 12NC Indicating Resistance Decade** | RESISTANCE DECADE | LAST DIGIT | |-------------------|------------| | 100 to 976 kΩ | 4 | | 1 to 9.76 MΩ | 5 | | ≥ 10 MΩ | 6 | ### 12NC Example The 12NC for a VR25, resistor value 7.5 M Ω , 5 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 241 13755. ⁽¹⁾ Ohmic values (other than resistance range) are available on request. ## High Ohmic (up to 22 $M\Omega$)/ High Voltage (up to 1.6 kV) Resistors ## Vishay BCcomponents | 12NC - re | 12NC - resistor type and packaging | | | | | | | |------------------|------------------------------------|------------------------|------------------------|---------------|---------------|----------------------|-------| | | | ORDERING CODE 2322 241 | | | | | | | | | | BANDOI IER IN AMMOPACK | | | BANDOLIER
ON REEL | | | TYPE | TOL.
(%) | RADIAL TAPED | STRAIGHT LEADS | | | | | | | | | 4000 | 52 mm | 26 mm | 52 mm | 52 mm | | | | units | 1000
units | 2000
units | 5000
units | 5000
units | | | | ± 1 | 0 | 8 | - | 7 | 6 | | | VR25 | ± 5 | 36 | 13 | 43 | 53 | 23 | | | | ± 10 | 38 | 12 | 42 | 52 | 22 | | | PART NU | MBER | | | | | | | | |------------|--|--------------------------|---|--------------------------------------|----------------------------|---|--|--| | PART NUMBE | PART NUMBER: VR25000001503JA100 | | | | | | | | | V | R 2 5 0 | 0 0 0 | 0 1 5 0 | 3 J | A 1 0 | 0 | | | | MODEL/SIZE | SPECIAL CHARACTER | TCR/MATERIAL | VALUE | TOLERANCE | PACKAGING (1) | SPECIAL | | | | VR25000 | 0 = Neutral Z = Value overflow (Special) | 0 = Standard | 3 digit value
1 digit multiplier
MULTIPLIER
3 = *10 ³
4 = *10 ⁴
5 = *10 ⁵ | F = ± 1 %
J = ± 5 %
K = ± 10 % | A5
A2
A1
R5
N4 | The 2 digits are used for all special parts. 00 = Standard | | | | PRODUCT DE | SCRIPTION: VR25 5 % A1 | 150K | | | | | | | | | VR25 | 5 % | A1 | 15 | 0K | | | | | | MODEL/SIZE | TOLERANCE | PACKAGING (1) | RESISTAN | ICE VALUE | | | | | | VR25 | ± 1 %
± 5 %
± 10 % | A5
A2
A1
R5 | | 150 kΩ
8.2 MΩ | | | | | | | | N4 |] | | | | | ### Notes: (1) Please refer to table PACKAGING • The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products | PACKAG | PACKAGING | | | | | |--------|-----------|--|------------|--|--| | CODE | PIECES | DESCRIPTION | MODEL/SIZE | | | | A5 | 5000 | Bandolier in ammopack straight leads 52 mm | | | | | A2 | 2000 | Bandolier in ammopack straight leads 26 mm | | | | | A1 | 1000 | Bandolier in ammopack straight leads 52 mm | VR25 | | | | R5 | 5000 | Bandolier on reel straight leads 52 mm | | | | | N4 | 4000 | Bandolier in ammopack radial taped |] | | | ## Vishay BCcomponents ## High Ohmic (up to 22 M Ω)/ High Voltage (up to 1.6 kV) Resistors ### **DIMENSIONS** | DIMENSIONS - resistor type and relevant physical dimensions | | | | | | | |---|--|--|--|--|--|--| | TYPE | TYPE Ø D _{max.} L _{1 max.} L _{2 max.} Ø d | | | | | | | VR25 2.5 6.5 7.5 0.58 ± 0.05 | | | | | | | | MASS PER 100 UNITS | | | |--------------------|-------------|--| | TYPE | MASS
(g) | | | VR25 52 mm | 21.2 | | | VR25 26 mm | 14.8 | | **MARKING** The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC publication 60062 "Color codes for fixed resistors". Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties. ### **OUTLINES** The length of the body (L₁) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60 294"). # FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of \pm 1 %, 5 % or 10 %. The values of the E96/E24/E12 series are in accordance with "IEC publication 60063". | LIMITING VALUES | | | | | | |-------------------------------|------|------|----------------|--|--| | LIMITING VOLTAGE (1) TYPE (V) | | | LIMITING POWER | | | | | DC | RMS | (W) | | | | VR25 | 1600 | 1150 | 0.25 | | | #### Notes: (1) The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1" • The maximum permissible hot-spot temperature is 155 °C For technical questions, contact: filmresistors.leaded@vishay.com Document Number: 28732 Revision: 21-Feb-08 ## High Ohmic (up to 22 M Ω)/ High Voltage (up to 1.6 kV) Resistors ## Vishay BCcomponents The power that the resistor can dissipate depends on the operating temperature. Maximum dissipation ($P_{\text{max.}}$) in percentage of rated power as a function of the ambient temperature (T_{amb}) Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to \hat{V}_{max} ; 12 discharges/min (drift $\Delta R/R \le 2$ %) ### **Derating** Hot-spot temperature rise (ΔT) as a function of dissipated power ### **Pulse Loading Capability** Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting ### **Application Information** ## Vishay BCcomponents ### High Ohmic (up to 22 M Ω)/ High Voltage (up to 1.6 kV) Resistors ### **TESTS AND REQUIREMENTS** Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ. The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3. In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. All soldering tests are performed with mildly activated flux. | TEST P | TEST PROCEDURES AND REQUIREMENTS | | | | | | |--------------------------|----------------------------------|-----------------------------------|---|---|--|--| | IEC
60115-1
CLAUSE | IEC
60068-2
TEST
METHOD | TEST | PROCEDURE | REQUIREMENTS | | | | 4.16 | 21 (U) | robustness of terminations: | | | | | | 4.16.2 | 21 (Ua1) | tensile all samples | Ø 0.6 mm; load 10 N; 10 s | number of failures < 10 x 10 ⁻⁶ | | | | 4.16.3 | 21 (Ub) | bending half number
of samples | Ø 0.6 mm; load 5 N; 4 x 90° | number of failures < 10 x 10 ⁻⁶ | | | | 4.16.4 | 21 (Uc) | torsion other half
of samples | 3 x 360° in opposite directions | no damage ΔR max.: \pm (0.5 % R + 0.05 Ω) | | | | 4.17 | 20 (Ta) | solderability | 2 s; 235 °C | good tinning; no damage | | | | 4.18 | 20 (Tb) | resistance to soldering heat | thermal shock: 3 s; 350 °C;
3 mm from body | $\Delta R \text{ max.: } \pm (0.5 \% R + 0.05 \Omega)$ | | | | 4.19 | 14 (Na) | rapid change of temperature | 30 min at - 55 °C and
30 min at + 155 °C; 5 cycles | $\Delta R \text{ max.: } \pm (0.5 \% R + 0.05 \Omega)$ | | | | 4.20 | 29 (Eb) | bump | 3 x 1500 bumps in 3 directions; 40 g | no damage ΔR max.: \pm (0.5 % R + 0.05 Ω) | | | | 4.22 | 6 (Fc) | vibration | frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h) | no damage ΔR max.: $\pm (0.5 \% R + 0.05 \Omega)$ | | | www.vishay.com 200 For technical questions, contact: filmresistors.leaded@vishay.com Document Number: 28732 Revision: 21-Feb-08 # High Ohmic (up to 22 $\mbox{M}\Omega)/$ High Voltage (up to 1.6 kV) Resistors # Vishay BCcomponents | TEST P | TEST PROCEDURES AND REQUIREMENTS | | | | | | |---|----------------------------------|--|---|---|--|--| | IEC
60115-1
CLAUSE | IEC
60068-2
TEST
METHOD | TEST | PROCEDURE | REQUIREMENTS | | | | 4.23 | | climatic sequence: | | | | | | 4.23.2 | 2 (Ba) | dry heat | 16 h; 155 °C | | | | | 4.23.3 | 30 (Db) | damp heat (accelerated) 1 st
cycle | 24 h; 55 °C; 90 to 100 % RH | | | | | 4.23.4 | 1 (Aa) | cold | 2 h; - 55 °C | | | | | 4.23.5 | 13 (M) | low air pressure | 2 h; 8.5 kPa; 15 to 35 °C | | | | | 4.23.6 | 30 (Db) | damp heat (accelerated) remaining cycles | 5 days; 55 °C; 95 to 100 % RH | $R_{\rm ins}$ min.: 10^3 M Ω
ΔR max.: $\pm (1.5 \% R + 0.1 \Omega)$ | | | | 4.24.2 | 3 (Ca) | damp heat
(steady state) | 56 days; 40 °C; 90 to 95 % RH;
dissipation 0.01 Pn;
limiting voltage 100 V (DC) | ΔR max.: ± (1.5 % R + 0.1 Ω) | | | | 4.25.1 | | endurance | 1000 h at 70 °C; Pn or V _{max.} | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | 4.8.4 | | temperature coefficient | between - 55 °C and + 155 °C
(TCR x 10 ⁻⁶ /K) | ≤ ± 200 | | | | 4.7 | | voltage proof on insulation | 700 V _{RMS} during 1 min;
V-block method | no breakdown | | | | 4.12 | | noise | "IEC publication 60195" | max. 5 μV/V | | | | 4.6.1.1 | | insulation resistance | 500 V (DC) during 1 min;
V-block method | R_{ins} min.: 10 4 M Ω | | | | 4.13 | | short time overload | room temperature;
dissipation 6.25 x Pn (voltage not more
than 2 x limiting voltage); 10 cycles;
5 s ON and 45 s OFF | $\Delta R \text{ max.: } \pm (2.0 \% R + 0.05 \Omega)$ | | | | 4.26 | | active flammability
"cheese-cloth test" | steps of: 5/10/16/25/40 x Pn _{RMS} duration
5 min | no flaming of gauze cylinder | | | | OTHER TEST IN ACCORDANCE WITH IEC 60695 | | | | | | | | 2.2 | | passive flammability
"needle-flame test" | application of test flame for 20 s | no ignition of product;
no ignition of under-layer;
burning time less than 30 s | | | Vishay ## **Disclaimer** All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Revision: 18-Jul-08 Document Number: 91000 www.vishay.com